Sparse non-negative generalized PCA with applications to metabolomics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse non-negative generalized PCA with applications to metabolomics

MOTIVATION Nuclear magnetic resonance (NMR) spectroscopy has been used to study mixtures of metabolites in biological samples. This technology produces a spectrum for each sample depicting the chemical shifts at which an unknown number of latent metabolites resonate. The interpretation of this data with common multivariate exploratory methods such as principal components analysis (PCA) is limit...

متن کامل

Supplement to “ Sparse Non - Negative Generalized PCA with Applications to Metabolomics ”

1 Proofs Proof 1 (Proof of Proposition 1) The result for u∗ is straightforward (Allen et al., 2011). We consider the problem in v: maximize v u XRv−λ||v ||1 subject to v Rv ≤ 1 & vj ≥ 0 j = 1, . . . p. (1) As this problem is convex and Slater’s condition is satisfied, the KKT conditions are necessary and sufficient for optimality. These are given by the following: RX u−λ1(p) − 2γ∗ 1 Rv∗+~γ∗ 2 =...

متن کامل

Sparse Non-negative Matrix Factorization with Generalized Kullback-Leibler Divergence

Non-negative Matrix Factorization (NMF), especially with sparseness constraints, plays a critically important role in data engineering and machine learning. Hoyer (2004) presented an algorithm to compute NMF with exact sparseness constraints. The exact sparseness constraints depends on a projection operator. In the present work, we first give a very simple counterexample, for which the projecti...

متن کامل

Non-negative sparse coding

Non-negative sparse coding is a method for decomposing multivariate data into non-negative sparse components. In this paper we briefly describe the motivation behind this type of data representation and its relation to standard sparse coding and non-negative matrix factorization. We then give a simple yet efficient multiplicative algorithm for finding the optimal values of the hidden components...

متن کامل

Sparse PCA with Oracle Property

In this paper, we study the estimation of the k-dimensional sparse principal subspace of covariance matrix Σ in the high-dimensional setting. We aim to recover the oracle principal subspace solution, i.e., the principal subspace estimator obtained assuming the true support is known a priori. To this end, we propose a family of estimators based on the semidefinite relaxation of sparse PCA with n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioinformatics

سال: 2011

ISSN: 1460-2059,1367-4803

DOI: 10.1093/bioinformatics/btr522